47 research outputs found

    Accelerated Randomized Benchmarking

    Full text link
    Quantum information processing offers promising advances for a wide range of fields and applications, provided that we can efficiently assess the performance of the control applied in candidate systems. That is, we must be able to determine whether we have implemented a desired gate, and refine accordingly. Randomized benchmarking reduces the difficulty of this task by exploiting symmetries in quantum operations. Here, we bound the resources required for benchmarking and show that, with prior information, we can achieve several orders of magnitude better accuracy than in traditional approaches to benchmarking. Moreover, by building on state-of-the-art classical algorithms, we reach these accuracies with near-optimal resources. Our approach requires an order of magnitude less data to achieve the same accuracies and to provide online estimates of the errors in the reported fidelities. We also show that our approach is useful for physical devices by comparing to simulations. Our results thus enable the application of randomized benchmarking in new regimes, and dramatically reduce the experimental effort required to assess control fidelities in quantum systems. Finally, our work is based on open-source scientific libraries, and can readily be applied in systems of interest.Comment: 10 pages, full source code at https://github.com/cgranade/accelerated-randomized-benchmarking #quantuminfo #benchmarkin

    Quantum Hamiltonian Learning Using Imperfect Quantum Resources

    Full text link
    Identifying an accurate model for the dynamics of a quantum system is a vexing problem that underlies a range of problems in experimental physics and quantum information theory. Recently, a method called quantum Hamiltonian learning has been proposed by the present authors that uses quantum simulation as a resource for modeling an unknown quantum system. This approach can, under certain circumstances, allow such models to be efficiently identified. A major caveat of that work is the assumption of that all elements of the protocol are noise-free. Here, we show that quantum Hamiltonian learning can tolerate substantial amounts of depolarizing noise and show numerical evidence that it can tolerate noise drawn from other realistic models. We further provide evidence that the learning algorithm will find a model that is maximally close to the true model in cases where the hypothetical model lacks terms present in the true model. Finally, we also provide numerical evidence that the algorithm works for non-commuting models. This work illustrates that quantum Hamiltonian learning can be performed using realistic resources and suggests that even imperfect quantum resources may be valuable for characterizing quantum systems.Comment: 16 pages 11 Figure
    corecore